Ключевые слова: поперечная сила. Внутренний изгибающий момент.
Прямым изгибом называется такой вид простого сопротивления, когда внешние силы приложены перпендикулярно продольной оси бруса (балки) и расположены в одной из главных плоскостей в соответствие с конфигурацией поперечного сечения балки.
Как известно, при прямом изгибе в поперечном сечении возникают два вида внутренних усилий: поперечная сила и внутренний изгибающий момент.
Рассмотрим пример расчетной схемы консольной балки с сосредоточенной силой Р, рис. 1, а, но…
Предварительно рекомендую Вам вспомнить из раздела "Статика" теоретической механики методы расчета реакций в связях на примерах тестов, приведенных в ПРИЛОЖЕНИИ по разделом Т-2.
Прежде всего вычислим реакции в связи на базе уравнений равновесия:
После мысленного рассечения балки нормальным сечением 1-1 рассмотрим равновесие левой отсеченной части (рис.1, б), получим:
Таким образом, на первом участке поперечная сила отрицательная и постоянная, а внутренний изгибающий момент изменяется по линейному закону.
Для правой отсеченной части при рассмотрении ее равновесия результат аналогичен рис.1, в. А именно:
На основании полученных значений строятся эпюры поперечных сил (рис.1, г) и внутренних изгибающих моментов (рис.1, д).
Как следует из построенных эпюр
,
а
в сечении жесткой связи. Именно это сечение и является наиболее опасным в данной
расчетной схеме.
Продифференцируем выражение внутреннего изгибающего момента по координате х:
Как видим, после дифференцирования получено выражение для поперечной силы. Случайность это или закономерность? - Закономерность.
Рассмотрим расчетную схему балки с произвольной распределенной нагрузкой
(рис.2).
Составим уравнение равновесия:
Таким образом, действительно: первая производная от внутреннего изгибающего момента по линейной координате равна поперечной силе в сечении.
Это известное свойство функции и ее первой производной успешно используется при проверке правильности построения эпюр. Так, для расчетной схемы консольной балки (рис.1) эта связь дает следующие проверочные результаты:
Таким образом, для квалифицированной проверки Вам рекомендуется вспомнить из высшей математики раздел, связанный с вычислением производных функции. Считаю целесообразно решить тесты, приведенные в ПРИЛОЖЕНИИ под разделом Т-3.
Рассмотрим ВТОРОЙ ХАРАКТЕРНЫЙ ПРИМЕР ИЗГИБА двухопорной балки (рис.3).
Очевидно, что опорные реакции RA = RB:
для первого участка (рис.3, б) -
для второго участка (рис.3, в) -
Эпюры внутренних усилий представлены соответственно на рис.3, г и 3, д.
На основе дифференциальной связи Q и М, получим:
![]() | для первого участка: ![]() |
![]() | для второго участка: ![]() |
Q = const и M также пропорционален х, т.е. изменяется по линейному закону.
Опасным в данном примере является сечение балки в центре пролета:
ТРЕТИЙ ХАРАКТЕРНЫЙ ПРИМЕР
связан с использованием распределенной по длине балки нагрузки (рис.4).
Следуя методике, принятой ранее, очевидно равенство опорных реакций:
,
а для искомого сечения (рис.4, б) выражения для внутренних
усилий приобретают вид:
На обеих опорах изгибающий момент отсутствует. Тем не менее опасным сечением
балки будет центр пролета при
.
Действительно, исходя из свойства функции и производной при
,
внутренний изгибающий момент достигает экстремума. Для нахождения исходной координаты
х0 (рис.3 в) в общем случае приравняем выражение
поперечной силы к нулю. В итоге получим
После подстановки
в выражение изгибающего момента получим:
Таким образом,
.
Необходимо отметить, что техника построения эпюр при изгибе наиболее трудно усваивается слушателями. Вам представляется возможность научиться "быстрому" построению эпюр на тесторе-тренажере, приведенном в ПРИЛОЖЕНИИ под грифом Т-4.