Warning: include() [function.include]: http:// wrapper is disabled in the server configuration by allow_url_include=0 in /var/www/u8485259/data/www/ninasb.ru/manuals/prikl_mech_17.html on line 16

Warning: include(http://ninasb.ru/includes/head.php) [function.include]: failed to open stream: no suitable wrapper could be found in /var/www/u8485259/data/www/ninasb.ru/manuals/prikl_mech_17.html on line 16

Warning: include() [function.include]: Failed opening 'http://ninasb.ru/includes/head.php' for inclusion (include_path='.:') in /var/www/u8485259/data/www/ninasb.ru/manuals/prikl_mech_17.html on line 16

Прикладная механика / Методички

Сложные виды деформации

Ключевые слова: косой изгиб, внутреннее сжатие-растяжение, условия прочности.

Принцип независимости действия сил и границы его применения

Вид деформации является сложным, когда в поперечном сечении стержня возникают два и более силовых факторов. Сложный вид деформации можно рассматривать как сумму простых видов, изученных ранее (растяжение, изгиб, кручение), если применим принцип независимости действия сил (частный случай принципа суперпозиции или наложения, применяемый в механике деформируемого твердого тела).

Напомним формулировку принципа независимости действия сил: напряжение (деформация) от группы сил равно сумме напряжений (деформаций) от каждой силы в отдельности. Он справедлив, если функция и аргумент связаны линейной зависимостью. В задачах механики материалов и конструкций становится неприменимым, если:

  • напряжения в какой-либо части конструкции от одной из сил или группы сил превышают предел пропорциональности sпц;
  • деформации или перемещения становятся настолько большими, что нарушается линейная зависимость между ними и нагрузкой.

Например, дифференциальное уравнение изгиба стержня является нелинейным и вытекающая из него зависимость прогиба f от нагрузки Р для консольной балки, изображенной на рис. 1, а, также является нелинейной (рис. 1, б). Однако, если прогибы балки невелики (f<<l) настолько, что (dv/dz)2<<1 (так как dv/dz ~ f/l), то дифференциальное уравнение изгиба становится линейным (как видно из рис. 1, б, начальный участок зависимости Р от f, описываемый этим уравнением, также является линейным).

Косой изгиб призматического стержня

Известно, что косой изгиб имеет место, когда силы, его вызывающие, не лежат в одной из главных плоскостей инерции. Однако, если разложить внешние силы по главным осям инерции Ох и Оу, то получим две системы сил P1x, P2x, ... , Pnx и P1y, P2y, ... , Pny, каждая из которых вызывает прямой изгиб с изгибающими моментами соответственно My и Мx (рис. 2). Применяя принцип независимости действия сил, нормальные напряжения s (рис. 3) определим как алгебраическую сумму напряжений от Mx и Мy:

Чтобы не связывать себя формальными правилами знаков, слагаемые будем определять по модулю, а знаки ставить по смыслу. Прогибы балки определим как геометрическую сумму прогибов от прямых изгибов (рис. 2)

Таким образом, расчет на косой изгиб с применением принципа независимости действия сил сводится к расчету на два прямых изгиба с последующим алгебраическим суммированием напряжений и геометрическим суммированием прогибов.


В случае поперечных сечений, имеющих две оси симметрии и выступающие угловые точки (рис. 4) с равными по модулю и максимальными одноименными координатами и напряжения в этих точках будут равны

Слагаемые в этом выражении рекомендуется определять по модулю, а знаки ставить по смыслу. Например, на рис. 5 верхний ряд знаков "+" и "-" соответствует напряжениям от Мx, а нижний ряд - от My, и напряжения в этих точках будут равны

Условие прочности для балок из пластичного материала с указанным типом сечений запишется в виде

В остальных случаях для определения max а (или max dp и max | sc | для хрупкого материала) необходимо по общей формуле проверить напряжения во всех подозрительных точках.

Есть и другой путь: положив s = 0, получим уравнение нейтральной линии. Так как напряжения в точках поперечного сечения будут пропорциональными расстояниям от нейтральной линии, то max s будут возникать в наиболее удаленных от нее точках.

ОГЛАВЛЕНИЕ


Warning: include() [function.include]: http:// wrapper is disabled in the server configuration by allow_url_include=0 in /var/www/u8485259/data/www/ninasb.ru/manuals/prikl_mech_17.html on line 160

Warning: include(http://ninasb.ru/includes/footer.php) [function.include]: failed to open stream: no suitable wrapper could be found in /var/www/u8485259/data/www/ninasb.ru/manuals/prikl_mech_17.html on line 160

Warning: include() [function.include]: Failed opening 'http://ninasb.ru/includes/footer.php' for inclusion (include_path='.:') in /var/www/u8485259/data/www/ninasb.ru/manuals/prikl_mech_17.html on line 160