Warning: include() [function.include]: http:// wrapper is disabled in the server configuration by allow_url_include=0 in /var/www/u8485259/data/www/ninasb.ru/manuals/prikl_mech_07.html on line 16

Warning: include(http://ninasb.ru/includes/head.php) [function.include]: failed to open stream: no suitable wrapper could be found in /var/www/u8485259/data/www/ninasb.ru/manuals/prikl_mech_07.html on line 16

Warning: include() [function.include]: Failed opening 'http://ninasb.ru/includes/head.php' for inclusion (include_path='.:') in /var/www/u8485259/data/www/ninasb.ru/manuals/prikl_mech_07.html on line 16

Прикладная механика / Методички

Плоское напряженное состояние

Ключевые слова: экстремальные напряжения, тензор деформации.

Рассмотрим важный для приложений случай плоского напряженного состояния, реализуемого, например, в плоскости Oyz. Тензор напряжений в этом случае имеет вид

Геометрическая иллюстрация представлена на рис.1. При этом площадки х=const являются главными с соответствующими нулевыми главными напряжениями. Инварианты тензора напряжений равны , а характеристическое уравнение принимает вид

Корни этого уравнения равны

(1)

Нумерация корней произведена для случая s1>0, s1<0.

Произвольная площадка характеризуется углом a на рис. 1, при этом вектор n имеет компоненты: ny=cosa, nz=sina, nх=0. Нормальное и касательное напряжения на наклонной площадке выражаются через угол a следующим образом:

(2)

(3)

Так как на главных площадках касательное напряжение отсутствует, то, приравнивая нулю выражение (3), получим уравнение для определения угла a между нормалью n и осью Оу

(4)

Наименьший положительный корень уравнения (4) обозначим через a1. Так как tg(х)-периодическая функция с периодом p, то имеем два взаимно ортогональных направления, составляющие углы a1 и a2=a1 + p/2 с осью Оу. Эти направления соответствуют взаимно перпендикулярным главным площадкам (рис. 2).

Если продифференцировать соотношение (2) по a и приравнять производную нулю, то придем к уравнению (4), что доказывает экстремальность главных напряжений.

Для нахождения ориентации площадок с экстремальными касательными напряжениями приравняем нулю производную от выражения

откуда получим

(5)

Сравнивая соотношения (4) и (5), находим, что

Это равенство возможно, если углы 2a и 2at отличаются на угол p/2. Следовательно, направления площадок с экстремальными касательными напряжениями отличаются от направлений главных площадок на угол p/4 (рис. 3).

Величины экстремальных касательных напряжений получим после подстановки (5) в соотношение (3) с использованием формул

После некоторых преобразований получим

Сравнивая это выражение с полученными ранее значениями главных напряжений (1), выразим экстремальные касательные напряжения через главные напряжения

Аналогичная подстановка в (2) приводит к выражению для нормальных напряжений на площадках с at

Полученные соотношения позволяют проводить направленно-ориентированный расчет конструкций на прочность в случае плоского напряженного состояния.

Тетзор деформации

Рассмотрим вначале случай плоской деформации (рис. 4). Пусть плоский элемент MNPQ перемещается в пределах плоскости и деформируется (изменяет форму и размеры). Координаты точек элемента до и после деформации отмечены на рисунке.

По определению относительная линейная деформация в точке М в направлении оси Ох равна

Из рис. 4 следует

Учитывая, что MN=dx, получим

В случае малых деформаций, когда (дu/дх)<<1, (дv/дх)<< 1, можно пренебречь квадратичными слагаемыми. С учетом приближенного соотношения

справедливого при x<<1, окончательно для малой деформации получим

Угловая деформация gxy определяется как сумма углов a1 и a2 (4). В случае малых деформаций

Для угловой деформации gxy имеем

Проводя аналогичные выкладки в общем случае трехмерной деформации, имеем девять соотношений

(6)

связывающих линейные и угловые деформации с перемещениями. Эти соотношения носят название соотношений Коши.

Три линейных и шесть угловых деформаций (6) образуют тензор малых деформаций

(7)

Этот тензор полностью определяет деформированное состояние твердого тела. Он обладает теми же свойствами, что и тензор напряжений. Свойство симметрии непосредственно следует из определения угловых деформаций. Главные значения и главные направления, а также экстремальные значения угловых деформаций и соответствующие им направления находятся теми же методами, что и для тензора напряжений.

Инварианты тензора деформаций определяются аналогичными формулами, причем первый инвариант тензора малых деформаций имеет ясный физический смысл. До деформации его объем равен dV0=dxdydz. Если пренебречь деформациями сдвига, которые изменяют форму, а не объем, то после деформации ребра будут иметь размеры

(рис. 4), а его объем будет равен

Относительное изменение объема

в пределах малых деформаций составит

что совпадает с определением первого инварианта. Очевидно, что изменение объема есть физическая величина, не зависящая от выбора системы координат.

Так же, как и тензор напряжений, тензор деформаций можно разложить на шаровой тензор и девиатор. При этом первый инвариант девиатора равен нулю, т. е. девиатор характеризует деформацию тела без изменения его объема.

ОГЛАВЛЕНИЕ


Warning: include() [function.include]: http:// wrapper is disabled in the server configuration by allow_url_include=0 in /var/www/u8485259/data/www/ninasb.ru/manuals/prikl_mech_07.html on line 230

Warning: include(http://ninasb.ru/includes/footer.php) [function.include]: failed to open stream: no suitable wrapper could be found in /var/www/u8485259/data/www/ninasb.ru/manuals/prikl_mech_07.html on line 230

Warning: include() [function.include]: Failed opening 'http://ninasb.ru/includes/footer.php' for inclusion (include_path='.:') in /var/www/u8485259/data/www/ninasb.ru/manuals/prikl_mech_07.html on line 230